Contents

1	Intr	roduction	2
2	Pre	liminary results	4
	2.1	Short exact sequences	4
	2.2	Local invariants	5
	2.3	Principle homogeneous spaces	5
	2.4	<i>Torsion</i>	7
	2.5	The plane of computations	7
3	Calo	culus of cocycles	7
	3.1	Starting lemmas	8
	3.2	Formula for cocycles	8
	3.3	Classification of cocycles	10
	3.4		10
	3.5		12
4	Qua	aternion and cyclic algebras	13
	4.1		13
	4.2		13
	4.3		14
	4.4		16
5	Dih	edral algebras	18
	5.1	g .	18
	5.2		20
	5.3	-	21

Algebras of exponent 2 over an elliptic curve

V.Guletskii

November 15, 1999

1 Introduction

Let k be a field, $char(k) \neq 2,3$, and let X be a smooth projective geometrically integral curve over k. Assume that X has at least one point rational over k. Let k(X) be the field of k-rational functions on X. The Brauer group Br(X) of X is naturally isomorphic to the unramified Brauer group $Br_{nr}(k(X)/k)$ of k(X)/k (see [Lich69], [Co88]). This allows to identify Br(X) with $Br_{nr}(k(X)/k)$. Denote by J the Jacobian variety of the curve X. In [GMY97] the description of the 2-torsion part in Br(X) in terms of quaternion algebras was made under the condition of k-rationality of the 2-torsion subgroup of J. In [GY98] this result was generated on algebras of an arbitrary exponent n: if all points of order n on J are rational over k, then any element of order n in Br(X) can be presented by a tensor product of cyclic algebras depending on the n-torsion subgroup of J.

Let X = E be an elliptic curve over k. In this paper we consider the problem of a description of 2-torsion part in Br(E) in the case when E has only one k-rational point of order 2 on the Jacobian E. Our arguments based on an explicit computation of 1-cocycles presenting elements of order 2 in the group of homogeneous spaces over E and a construction of a section for some divisor mapping induced by the 2-torsion subgroup of E.

It should be mentioned that in [YM96], [VY96] and [V97] a complete description of the 2-torsion in Br(E) was made in the case of a local field k and all proofs there heavily use the completeness property of the ground field k. In contrast to this we present a different approach which is mainly based on cohomology methods and allows to consider an arbitrary ground field k, $char(k) \neq 2, 3$. On the other hand we do not answer the questions about triviality and indices of algebras of exponent 2 in Br(E).

Since the characteristic of the ground field k is not 2 or 3, the elliptic curve E can be defined as the projective closure of a plane curve defined by an equation

$$y^2 = F(x) ,$$

where F(x) is a cubic polynomial over k with the leading coefficient equal to 1 without multiple roots in a separable closure \bar{k} of k. Let $\bar{E}=E(\bar{k})$ be the group of geometric points on E and let $2\bar{E}=\{O,P,T,S\}$ be the 2-torsion subgroup of \bar{E} . Here O is the infinite point on E playing the rule of zero on the curve E. Let x_P, x_T, x_S be the x-coordinates of the points P, T, S respectively. Then we have the decomposition

$$F(x) = (x - x_P)(x - x_T)(x - x_S)$$

over \bar{k} . We say that E is *split* if all 2-torsion points are rational over k. This is equivalent to the condition that all roots x_P , x_T , x_S of the polynomial F(x) lie in k. We say that E is *semisplit* if there exists only one k-point in $_2\bar{E}$ denoted below by P. In other words, only one root x_P of F(x) is k-rational. If all non-trivial points in $_2\bar{E}$ are not k-rational, then we say that E is *fully non-split*.

In the split case it is not hard to compute quaternion algebras generating ${}_{2}\text{Br}(E)$. Recall the result of [GY98] for the group ${}_{2}\text{Br}(E)$. Let E be split. Fix any two non-trivial 2-torsion points

on \bar{E} , for example P and T. Then any unramified central simple algebra of exponent 2 over k(E) similar to a tensor product

$$A \otimes (b, x - x_P) \otimes (c, x - x_T)$$
.

Here A is a numerical algebra over k(E), i.e. an algebra obtained by the scalar extension of some algebra with the center k. The algebras $(b, x - x_P)$, $(c, x - x_T)$ are quaternion algebras over k(E) with $b, c \in k^*$. Note that $(b, x - x_P)$ or $(c, x - x_T)$ can be trivial in Br(E). For example, if b is a square in k then $(b, x - x_P)$ is zero in Br(E).

If E is fully nonsplit, then the problem of finding of all unramified central simple algebras of exponent 2 over k(E) can be reduced to either a split or semisplit case. Indeed, fully nonsplitness means that F is an irreducible polynomial over k. Then the extension $L = k(x_T)$ has degree 3 over k. Let $E_L = E \times \operatorname{Spec}(L)$. The composition

$$\operatorname{Br}(E) \xrightarrow{\operatorname{res}} \operatorname{Br}(E_L) \xrightarrow{\operatorname{cor}} \operatorname{Br}(E)$$

coincides with the multiplication-by-3 homomorphism on the group Br(E). So keeping in mind that 2 and 3 are relatively prime we get that the corestriction map

$$\operatorname{cor}: {}_{2}\operatorname{Br}(E_{L}) \longrightarrow {}_{2}\operatorname{Br}(E)$$

is surjective. Hence one can find algebras in ${}_{2}\mathrm{Br}(E)$ applying cor to algebras from ${}_{2}\mathrm{Br}(E_{L})$.

Thus we see that the main situation is when $_2\mathrm{Br}(E)$ has only one non-trivial point P defined over k. In this case

$$F(x) = (x - x_P)f(x) \tag{1}$$

where f(x) is an irreducible quadratic polynomial over k.

Let $G = \operatorname{Gal}(\overline{k}/k)$ be the absolute Galois group of the ground field k, $L = k(x_T) = k(x_S)$ and $H = \operatorname{Gal}(\overline{k}/L)$. Let U be a subgroup of index 2 in H and $Z = \overline{k}^U$. If U is normal in G and G/U is a cyclic group of order 4, then there exists a cyclic algebra $(Z \cdot k(E)/k(E), f(x))$ over k(E), where the quadratic polynomial f(x) is considered as a rational function on E. If U is not normal in G (this is equivalent to the existing of an element $g_0 \in G \setminus H$ such that $U \neq g_0^{-1}Ug_0$) then one can construct a special central simple algebra B_U over k(E) (see Section 5.2 below), which is a cross product defined by a 2-cocycle in an explicit form. We prove the following theorem, which is the main result of this paper.

Theorem 1.0.1 Let k be a field, $char(k) \neq 2,3$, and let E be a semisplit elliptic curve over k. Then any element of order 2 in the quotient group Br(E)/Br(k) is similar to a simple algebra of one of the following three types:

$$(a, x - x_P)$$
,

where $(a, x - x_P)$ is a quaternion algebra over k(E) with $a \in k^*$;

(ii)

$$(Z \cdot k(E)/k(E), f(x))$$
,

where $(Z \cdot k(E)/k(E), f(x))$ is a cyclic algebra over k(E) generated by a cyclic extension Z/k of degree 4 over k such that $L \subset Z$ and the polynomial f is defined by (1) and is viewed as a k-rational function on E;

(iii) an algebra B_U , which is defined in Section 5.2 by a 2-cocycle in an explicit form.

Note that the direct computation (see Proposition 5.2.1 below) shows that the algebra B_U from (iii) has index at most 4. This agrees with the results of Van den Bergh (see [1], Prop. 1, p. 196) and implies that B_U is similar to either a quaternion or biquaternion algebra over k(E). After the paper was finished V. Chernousov inform me that B_U can be decomposed in a tensor product of two explicit quaternion algebras determined by f(x) and the subgroup U. The corresponding theorem can be formulated in the following way:

Theorem 1.0.2 Let k be a field, $char(k) \neq 2,3$, and E be a semisplit elliptic curve over k. Without loss of generality the curve E can be defined by the equation $y^2 = (x - p)(x^2 - a)$, where $p, a \in k$ and a is not a square in k (hence $f(x) = x^2 - a$ and $L = k(\sqrt{a})$). Let B_U be the algebra from (iii) of Theorem 1.0.1 and $b = u + v\sqrt{a}$ an element in L such that $\bar{k}^U = L(\sqrt{b})$. Then B_U is similar to the tensor product

$$(v, u^2 - v^2 a) \otimes (vx + u, (u^2 - v^2 a)(x^2 - a))$$
,

where $(v, u^2 - v^2a)$ is the numerical quaternion algebra defined by the two constants $v, u^2 - v^2a \in k \subset k(E)$ and $(vx + u, (u^2 - v^2a)(x^2 - a))$ is the quaternion algebra defined by the functions $vx + u, (u^2 - v^2a)(x^2 - a) \in k(E)$.

Acknowledgements

This work was supported by the Institute of Mathematics of the Academy of Sciences of Belarus and TMR ERB FMRX CT-97-0107. The author thanks Vladimir Chernousov for useful discussions.

Notations

Symbols \mathbb{Z} , \mathbb{Q} denotes integers and rational numbers respectively. If A is an abelian group and n is a natural number, then $n:A\to A$ denotes the homomorphism of multiplication by n and nA, A/n are its kernel and cokernel respectively. For any finite set S we denote the number of elements in S by #S. If H is a group, U its normal subgroup and $x\in H$, we denote the left coset xU by \overline{x} . F^* denotes the multiplicative group of a field F. Variety is always smooth projective and geometrically integral scheme over k. For any variety X over k and for any field extension L/k let X(L) be the set of L-points on X and let $\overline{X} = X(\overline{k})$ be the set of geometrical points on X. A curve is a variety of dimension one. A point of a curve means closed point. We denote an arbitrary curve by X. An elliptic curve will be always denoted by E.

2 Preliminary results

In this section we recall some well-known facts used below. All of them can be found in [Fadd51], [Mi81] and [Sch69].

2.1 Short exact sequences

Let $G = \operatorname{Gal}(\bar{k}/k)$ be the absolute Galois group of the ground field k, X a curve of an arbitrary genus defined over k such that $X(k) \neq \emptyset$ and let $\bar{k}(\bar{X})$ be the field of \bar{k} -rational functions on \bar{X} . One can associate with the curve X the following discrete (left) G-modules: $\operatorname{Div}(\bar{X})$ is the divisor group of \bar{X} ; $\operatorname{Div}^0(\bar{X})$ is its subgroup of degree zero divisors on \bar{X} ; $\operatorname{P}(\bar{X})$ is the subgroup of principles divisors; $\operatorname{Pic}(\bar{X}) = \operatorname{Div}(\bar{X})/\operatorname{P}(\bar{X})$ and $\operatorname{Pic}^0(\bar{X}) = \operatorname{Div}^0(\bar{X})/\operatorname{P}(\bar{X})$. These G-modules are terms of the following short exact sequences

$$1 \to \bar{k}^* \longrightarrow \bar{k}(\bar{X})^* \xrightarrow{\text{div}} P(\bar{X}) \to 0 , \qquad (2)$$

$$0 \to P(\bar{X}) \longrightarrow Div(\bar{X}) \longrightarrow Pic(\bar{X}) \to 0$$
, (3)

$$0 \to \operatorname{Pic}^{0}(\bar{X}) \longrightarrow \operatorname{Pic}(\bar{X}) \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0.$$
 (4)

Here deg is the degree homomorphism and div is the homomorphism sending $f \in \bar{k}(\bar{X})^*$ into the divisor $\operatorname{div}(f)$ of zeros and poles of the rational function f. Let \bar{J} be the group of \bar{k} -points of the Jacobian variety J of the curve X. Since we suppose that X has at least one k-rational point, \bar{J} and $\operatorname{Pic}^0(\bar{X})$ are isomorphic as discrete G-modules. Therefore we have the short exact sequence

$$0 \to P(\bar{X}) \longrightarrow Div^0(\bar{X}) \xrightarrow{sum} \bar{J} \to 0$$
. (5)

2.2 Local invariants

Denote the set of closed points on X (i.e. the set of points of codimension 1 on X) by $X^{(1)}$. All such points $x \in X^{(1)}$ are in one-to-one correspondence with discrete valuations rings of the field k(X) over k. Let $k(X)_x$ be the completion of k(X) with respect to the valuation corresponding to a point $x \in X^{(1)}$. Denote by k(x) the residue field of X in x. Then $[k(x):k] < \infty$ and one can identify k(x) with a subfield in k. Let $K_x = \operatorname{Gal}(k/k(x))$ for any $K_x \in X^{(1)}$. Then $\operatorname{Br}(k(X)_x)$ is isomorphic to the direct sum of the Brauer group $\operatorname{Br}(k(x))$ and the group $\operatorname{Hom}_{cont}(K_x) = \operatorname{Continuous}(K_x) = \operatorname{Hom}_{cont}(K_x) = \operatorname{Ho$

$$\operatorname{inv}_x : \operatorname{Br}(k(X)) \longrightarrow \operatorname{Hom}_{cont}(G_x, \mathbb{Q}/\mathbb{Z})$$

be the composition of the scalar extension homomorphism

$$\operatorname{Br}(k(X)) \longrightarrow \operatorname{Br}(k(X)_x)$$

and the projection

$$\operatorname{Br}(k(X)_x) \cong \operatorname{Br}(k(x)) \oplus \operatorname{Hom}_{cont}(G_x, \mathbb{Q}/\mathbb{Z}) \to \operatorname{Hom}_{cont}(G_x, \mathbb{Q}/\mathbb{Z})$$
.

The homomorphism inv_x maps a class of algebras $a \in \operatorname{Br}(k(X))$ into its *local invariant* $\operatorname{inv}_x(a)$. The order of $\operatorname{inv}_x(a)$ coincides with the ramification index of algebras from a at the point $x \in X^{(1)}$. Algebras can be ramified only in a finite number of points. Hence one can construct the homomorphism

inv :
$$\operatorname{Br}(k(X)) \longrightarrow \bigoplus_{x \in X^{(1)}} \operatorname{Hom}_{cont}(G_x, \mathbb{Q}/\mathbb{Z})$$
.

By definition, its kernel is unramified Brauer group $\operatorname{Br}_{nr}(k(X))$ of k(X)/k. As it was mentioned in the beginning, the group $\operatorname{Br}_{nr}(k(X))$ can be naturally identified with the Brauer group $\operatorname{Br}(X)$ of the curve X.

Recall the cohomology description of the homomorphism inv. Below $H^*(G,?)$ is the Galois cohomology functor on the category of (left) discrete G-modules. By Tsen theorem, the group $\operatorname{Br}(k(X))$ is isomorphic to the cohomology group $H^2(G,\bar{k}(\bar{X})^*)$. Let M_x be a sumbmodule in $\operatorname{Div}(\bar{X})$ generated by points in \bar{X} mapping into $x \in X^{(1)}$ under the natural projection $\bar{X} \to X$. The discrete G-module M_x is identified with the induced G-module $M_G^{G_x}(\mathbb{Z})$, where \mathbb{Z} is viewed as a trivial G-module. Then $\operatorname{Div}(\bar{X}) \cong \bigoplus_x M_G^{G_x}(\mathbb{Z})$, where x runs all points in $X^{(1)}$. Thus we get

$$H^2(G,\operatorname{Div}(\bar{X}))\cong \bigoplus_x H^2(G,M_G^{G_x}(\mathbb{Z}))\cong \bigoplus_x H^2(G_x,\mathbb{Z})\cong \bigoplus_x \operatorname{Hom}_{cont}(G_x,\mathbb{Q}/\mathbb{Z})\;.$$

It can be proven that the composition

$$\operatorname{Br}(k(X)) \cong H^2(G, \bar{k}(\bar{X})^*) \xrightarrow{\operatorname{div}^*} H^2(G, \operatorname{Div}(\bar{X})) \cong \bigoplus_{\bar{x}} \operatorname{Hom}_{cont}(G_x, \mathbb{Q}/\mathbb{Z})$$

coincides with the homomorphism inv. Here div* is the homomorphism induced by div on cohomology groups. Therefore,

$$Br(X) \cong \ker(\operatorname{div}^*)$$
.

2.3 Principle homogeneous spaces

Consider the exact sequence

$$H^2(G, \bar{k}^*) \to H^2(G, \bar{k}(\bar{X})^*) \stackrel{\alpha}{\to} H^2(G, P(\bar{X})) \to H^3(G, \bar{k}^*) \to H^3(G, \bar{k}(\bar{X})^*)$$

induced by (2). Since $X(k) \neq \emptyset$, the left and right homomorphisms are injective for any n (see [Sch69]). Hence we have the short exact sequence

$$0 \to H^2(G, \bar{k}^*) \longrightarrow H^2(G, \bar{k}(\bar{X})^*) \stackrel{\alpha}{\longrightarrow} H^2(G, P(\bar{X})) \to 0 \ .$$

Taking into account the isomorphisms $H^2(G, \bar{k}^*) \cong \operatorname{Br}(k)$ and $H^2(G, \bar{k}(\bar{X})^*) \cong \operatorname{Br}(k(X))$, one can obtain the exact sequence

$$0 \to \operatorname{Br}(k) \stackrel{\iota}{\longrightarrow} \operatorname{Br}(k(X)) \stackrel{\alpha}{\longrightarrow} H^2(G, \operatorname{P}(\bar{X})) \to 0$$

where ι is induced by the scalar extension: if A is a simple algebra with the center k, then $\iota([A]) = [A \otimes_k k(X)].$

Now observe that $\operatorname{div}^* = \beta \circ \alpha$, where $H^2(G, P(\bar{X})) \stackrel{\beta}{\to} H^2(G, \operatorname{Div}(\bar{X}))$ is the homomorphism induced by the embedding $P(\bar{X}) \subset Div(\bar{X})$. Since α is surjective, one has $ker(div^*) = \alpha^{-1}(ker(\beta))$. Consider the exact sequence

$$H^1(G, \operatorname{Pic}(\bar{X})) \xrightarrow{\Delta} H^2(G, \operatorname{P}(\bar{X})) \xrightarrow{\beta} H^2(G, \operatorname{Div}(\bar{X}))$$

induced by (3). It follows that $\ker(\operatorname{div}^*) = \alpha^{-1}(\operatorname{im}(\Delta))$. Furthermore, consider the exact sequence

$$\operatorname{Pic}(\bar{X})^G \xrightarrow{\operatorname{deg}} \mathbb{Z} \to H^1(G, \operatorname{Pic}^0(\bar{X})) \to H^1(G, \operatorname{Pic}(\bar{X})) \to 0$$

induced by (4). Here $\operatorname{Pic}(\bar{X})^G$ is the group of divisor classes invariant under the action of G. The last sequence is ended by zero because $H^1(G,\mathbb{Z})=0$. Since $X(k)\neq\emptyset$, the homomorphism deg is surjective, hence the epimorphism $H^1(G, \operatorname{Pic}^0(\bar{X})) \to H^1(G, \operatorname{Pic}(\bar{X}))$ is injective. Thus we have that

$$H^1(G, \operatorname{Pic}(\bar{X})) \cong H^1(G, \operatorname{Pic}^0(\bar{X})) \cong H^1(G, \bar{J})$$
.

Then

$$\ker(\operatorname{div}^*) = \alpha^{-1}(\operatorname{im}(\delta))$$
,

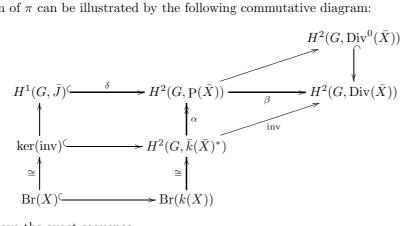
where $\delta: H^1(G,\bar{J}) \to H^2(G,P(\bar{X}))$ is the connecting homomorphism induced by (5). Note that the condition $H^1(G_x,\mathbb{Z})=0$ implies that $H^1(G,\operatorname{Div}(\bar{X}))=0$. Then the exact sequence induced by (3) yields that the connecting homomorphism Δ is injective. Hence δ is injective too. Let

$$\delta^{-1}: \operatorname{im}(\delta) \to H^1(G, \bar{J})$$

be the inverse to the isomorphism $\delta: H^1(G, \bar{J}) \to \operatorname{im}(\delta)$. Define π as the composition

$$\pi: \operatorname{Br}(X) \cong \ker(\operatorname{div}^*) \xrightarrow{\alpha} \operatorname{im}(\delta) \xrightarrow{\delta^{-1}} H^1(G, \bar{J}) .$$
 (6)

The definition of π can be illustrated by the following commutative diagram:



Now we have the exact sequence

$$0 \to \operatorname{Br}(k) \xrightarrow{\iota} \operatorname{Br}(X) \xrightarrow{\pi} H^1(G, \bar{J}) \to 0.$$
 (7)

It splits. Indeed, if $x \in X(k)$, then k(x) = k and $Br(k(X)_x) \cong Br(k) \oplus Hom_{cont}(G, \mathbb{Q}/\mathbb{Z})$. One can check that the composition

$$\operatorname{Br}(k) \to \operatorname{Br}(k(X)) \to \operatorname{Br}(k(X)_x) \to \operatorname{Br}(k) \oplus \operatorname{Hom}_{cont}(G, \mathbb{Q}/\mathbb{Z}) \to \operatorname{Br}(k)$$

is an identical map. Hence ι has a left inverse.

2.4 Torsion

Let n be a natural number. If $A \xrightarrow{\iota} B$ is a homomorphism of abelian groups, then denote by ${}_{n}A \xrightarrow{n^{\iota}} {}_{n}B$ and $A/n \xrightarrow{\iota/n} B/n$ the homomorphisms induced by ι . The sequence (7) induces the exact sequence

$$0 \to {}_n \mathrm{Br}(k) \xrightarrow{n \iota} {}_n \mathrm{Br}(X) \xrightarrow{n \pi} {}_n H^1(G, \bar{J}) \to \mathrm{Br}(k)/n \xrightarrow{\iota/n} \mathrm{Br}(X)/n \xrightarrow{\pi/n} H^1(G, \bar{J})/n \to 0 \; .$$

If $\hat{\iota}$ is a left inverse to ι , then $\hat{\iota}/n$ is a left inverse to ι/n . Therefore ι/n is injective. Then the last exact sequence yields the short exact sequence

$$0 \to {}_{n}\mathrm{Br}(k) \xrightarrow{n^{l}} {}_{n}\mathrm{Br}(X) \xrightarrow{n^{\pi}} {}_{n}H^{1}(G,\bar{J}) \to 0$$
.

We shall use the following simple

Lemma 2.4.1 Let $0 \to A \xrightarrow{\iota} B \xrightarrow{\pi} C \to 0$ be an exact sequence. Suppose that the homomorphism ι has a left inverse $\hat{\iota}: B \to C$. For any $c \in C$ choose $b_c \in \pi^{-1}(c)$. Then any element $b \in B$ has the unique decomposition $b = b_c + \iota(a)$, where $c = \pi(b) \in C$ and $a = \iota^{-1}(b - b_c)$. The map $\hat{\pi}: C \to B$, $c \mapsto b_c - \iota\hat{\iota}(b_c)$ is a right inverse homomorphism of π .

2.5 The plane of computations

Now let X = E be an elliptic curve over k. Then $\bar{J} = \bar{E}$ and there exists the split exact sequence

$$0 \rightarrow {}_{2}\mathrm{Br}(k) \stackrel{{}_{2}\iota}{\longrightarrow} {}_{2}\mathrm{Br}(E) \stackrel{{}_{2}\pi}{\longrightarrow} {}_{2}H^{1}(G,\bar{E}) \rightarrow 0$$
.

For every cohomology class $c \in {}_2H^1(G, \bar{E})$ we want to choose a Brauer class $b_c \in {}_2\mathrm{Br}(E)$ such that ${}_2\pi(b_c) = c$. We shall describe classes $c \in {}_2H^1(G, \bar{E})$ in terms of explicit cocycles (Section 3). After that we construct central simple algebras representing the Brauer classes b_c in $\mathrm{Br}(E)$ (Sections 4 and 5). Since by Lemma 2.4.1 any element $b \in {}_2\mathrm{Br}(E)$ has a unique decomposition $b = {}_2\iota(a) + b_c$, where $a \in {}_2\mathrm{Br}(k)$ and $c \in {}_2H^1(G, \bar{E})$, we get that a full description of 2-torsion part of $\mathrm{Br}(E)/\mathrm{Br}(k)$ is given by central simple algebras representing classes b_c .

The Kummer sequence

$$0 \to {}_{2}\bar{E} \longrightarrow \bar{E} \xrightarrow{2} \bar{E} \to 0 \tag{8}$$

yields the exact sequence

$$0 \to E(k)/2 \longrightarrow H^1(G, 2\bar{E}) \longrightarrow {}_2H^1(G, \bar{E}) \to 0.$$
 (9)

It follows that any element in ${}_2H^1(G,\bar{E})$ can be presented by a cocycle $\phi:G\to {}_2\bar{E}$ of the group G with coefficients in ${}_2\bar{E}$. Moreover, the cohomology class $\mathrm{cls}(\phi)\in {}_2H^1(G,\bar{E})$ is trivial iff the cohomology class $\mathrm{cls}(\phi)\in H^1(G,{}_2\bar{E})$ lies in the image of the embedding $E(k)/2\hookrightarrow H^1(G,{}_2\bar{E})$. This suggests that firstly we need to describe all 1-cocycles of the group G with coefficients in ${}_2\bar{E}$. It will provide the description of ${}_2H^1(G,\bar{E})$ in terms of explicit 1-cocycles of the group G with coefficients in ${}_2\bar{E}$.

3 Calculus of cocycles

Let E be a semisplit elliptic curve and let $\{O,P\}$ be the group k-rational 2-torsion points on E. Then $F(x)=(x-x_P)f(x)$, where f(x) is an irreducible quadratic polynomial over k. If ${}_2E=\{O,P,T,S\}$ is the group of all 2-torsion points on \bar{E} then $f(x)=(x-x_T)(x-x_S)$ over \bar{k} . Let L/k be the minimal subextension in \bar{k}/k such that all 2-torsion points of E are rational over E, i.e. $E=k(x_T)=k(x_S)$. The group $E=\mathrm{Gal}(\bar{k}/L)$ has index 2 in $E=\mathrm{Gal}(\bar{k}/L)$

3.1 Starting lemmas

Consider the exact sequence

$$0 \to H^1(G/H,\,{}_2\bar{E}) \xrightarrow{\inf} H^1(G,\,{}_2\bar{E}) \xrightarrow{\inf} H^1(H,\,{}_2\bar{E})^{G/H} \longrightarrow H^2(G/H,\,{}_2\bar{E})$$

induced by the Hochschild-Serre spectral sequence $H^p(G/H, H^q(H, _2\bar{E})) \Rightarrow H^n(G, _2\bar{E})$ (see, for example, [Serre]). It is easy to show that $H^1(G/H, _2\bar{E}) = 0$ and $H^2(G/H, _2\bar{E}) = 0$. So we have the isomorphism

$$\operatorname{res}: H^{1}(G, {}_{2}\bar{E}) \xrightarrow{\cong} H^{1}(H, {}_{2}\bar{E})^{G/H} . \tag{10}$$

Recall the action of G/H on $H^1(H, {}_2\bar{E})$. Let $\psi \in H^1(H, {}_2\bar{E}) = Hom(H, {}_2\bar{E})$ and $g_0 \in G \backslash H$. Then $(g_0\psi)(g) = g_0(\psi(g_0^{-1}gg_0))$ for any $g \in G$. Note that this action does not depend on the choice of g_0 and we can consider the action of g_0 as an action of the unique non trivial element in G/H.

Now fix an isomorphism

$${}_2\bar{E}\cong\{O,T\}\oplus\{O,S\}$$
 .

Then

$$Hom(H, _{2}\bar{E}) \cong Hom(H, \{O, T\}) \oplus Hom(H, \{O, S\})$$
.

Let (ψ_1, ψ_2) be an element in $Hom(H, \{O, T\}) \oplus Hom(H, \{O, S\})$ and $U_i = \ker(\psi_i)$, i = 1, 2. Then the pair (ψ_1, ψ_2) lies in $(Hom(H, \{O, T\}) \oplus Hom(H, \{O, S\}))^{G/H}$ if and only if $U_2 = g_0^{-1}U_1g_0$ for some $g_0 \in G \setminus H$ (this condition does not depend on the choice of an element g_0 in $G \setminus H$). Therefore one can identify the set of nontrivial homomorphisms in $(Hom(H, \{O, T\}) \oplus Hom(H, \{O, S\}))^{G/H}$ with the set of subgroups U of index two in H. A such U corresponds to the homomorphism $\psi = \psi_T + \psi_S$, where ψ_T is the surjective homomorphism $H \to \{O, T\}$ with the kernel U, and ψ_S is the surjective homomorphism $H \to \{O, S\}$ with the kernel $g_0^{-1}Ug_0$.

Lemma 3.1.1 If $\phi: G \to {}_2\bar{E}$ is a cocycle, then $V = \ker(\phi|_H)$ is a normal subgroup in G.

Proof. Isomorphism (10) shows that $\phi|_H$ is invariant under the action of G/H. Then either V=H or $V=U\cap g_0^{-1}Ug_0$ for some subgroup U of index 2 in H. In the second case $g_0^{-1}Vg_0=g_0^{-1}(U\cap g_0^{-1}Ug_0)g_0=g_0^{-1}Ug_0\cap g_0^{-2}Ug_0^2=g_0^{-1}Ug_0\cap U=V$. For any element $g\in G$ one can write $g=hg_0$ for some $h\in H$. Then $g^{-1}Vg=g_0^{-1}h^{-1}Vhg_0=g_0^{-1}Vg_0\subset V$.

Lemma 3.1.2 If $\phi: G \to {}_2\bar{E}$ is a cocycle and $\psi = \phi | H$, then $\psi(g^2) \in \{O, P\}$ for any $g \in G \backslash H$.

Proof. Since $\psi \in H^1(H, {}_2\bar{E})^{G/H}$, it follows that $g_0\psi(h) = \psi(g_0^{-1}hg_0)$ for any $h \in H$. Substituting $h = g^2$ we get

$$g_{0}\psi(g^{2}) = \psi(g_{0}^{-1}g^{2}g_{0}) = \psi(g_{0}^{-1}g) + \psi(gg_{0})$$

$$= \psi(gg_{0}) + \psi(g_{0}^{-1}g)$$

$$= \psi(gg_{0}g_{0}^{-1}g)$$

$$= \psi(g^{2})$$

$$\Leftrightarrow \psi(g^{2}) \in \{O, P\}.$$

3.2 Formula for cocycles

Now let g_0 be some element in $G\backslash H$. For any $Q\in {}_2\bar{E}=\{O,P,T,S\}$ and for any homomorphism $\psi\in Hom(H,{}_2\bar{E})$ denote by $\phi_{Q,\psi}$ the map defined by the rule

$$\phi_{Q,\psi}(g) = \begin{cases} \psi(g), & g \in H \\ g_0 \psi(g_0^{-1}g) + Q, & g \in G \backslash H. \end{cases}$$
 (11)

Lemma 3.2.1 Any cocycle $\phi: G \to {}_2\bar{E}$ is of the form $\phi_{Q,\psi}$ for some $Q \in {}_2\bar{E}$ and $\psi \in Hom(H, {}_2\bar{E})$. Conversely, let Q and ψ be as above. Then $\partial \phi_{Q,\psi} = 0$ if and only if the following two conditions hold:

(i)
$$g_0\psi(h) = \psi(g_0^{-1}hg_0)$$
 for any $h \in H$;
(ii) $\psi(g_0^2) = P$ for $Q \in \{T, S\}$ and $\psi(g_0^2) = O$ for $Q \in \{O, P\}$.

Proof. If ϕ is a 1-cocycle with coefficients in $_2\bar{E}$ then for any $g\in G$ we have

$$\partial \phi(g_0, g_0^{-1}g) = g_0 \phi(g_0^{-1}g) + \phi(g) + \phi(g_0) = 0$$

for some $g_0 \in G \backslash H$. Therefore $\phi = \phi_{Q,\psi}$, where $Q = \phi(g_0)$ and $\psi = \phi|_H$. If $h_1, h_2 \in H$, then it is clear that $\partial \phi_{Q,\psi}(h_1, h_2) = 0$. Let $g \in G \backslash H$ and $h \in H$. Then

$$\begin{array}{lcl} \partial \phi_{Q,\psi}(g,h) & = & g\psi(h) + g_0\psi(g_0^{-1}gh) + Q + g_0\psi(g_0^{-1}g) + Q \\ & = & g\psi(h) + g_0\psi(g_0^{-1}g) + g_0\psi(h) + g_0\psi(g_0^{-1}g) \\ & = & g\psi(h) + g_0\psi(h) \\ & = & \begin{cases} 2\psi(h) \,, & \psi(h) \in \{O,P\} \\ 2g_0\psi(h) \,, & \psi(h) \in \{T,S\} \end{cases} \\ & = & 0 \end{array}$$

Note that we replace signs "-" by "+" because $\phi_{Q,\psi}$ is a map into a 2-torsion group. If $h \in H, g \in G \backslash H$, then for any Q and ψ we have

$$\begin{array}{lcl} \partial \phi_{Q,\psi}(h,g) & = & g_0 \psi(g_0^{-1}g) + Q + g_0 \psi(g_0^{-1}hg) + Q + \psi(h) \\ & = & g_0 \psi(g_0^{-1}g) + g_0 \psi(g_0^{-1}hg_0) + g_0 \psi(g_0^{-1}g) + \psi(h) \\ & = & g_0 \psi(g_0^{-1}hg_0) + \psi(h) \; . \end{array}$$

Therefore, if $\partial \phi_{Q,\psi} = 0$, then $g_0 \psi(g_0^{-1} h g_0) + \psi(h) = 0$, that is

$$g_0\psi(h) = \psi(g_0^{-1}hg_0) \ . \tag{12}$$

If $g_1 \in G \backslash H$, $g_2 \in G \backslash H$, then for any Q and ψ we have:

$$\begin{array}{lcl} \partial \phi_{Q,\psi}(g_1,g_2) & = & g_1(g_0\psi(g_0^{-1}g_2) + Q) + \psi(g_1g_2) + g_0\psi(g_0^{-1}g_1) + Q \\ & = & \psi(g_0^{-1}g_2) + \psi(g_1g_2) + g_0\psi(g_0^{-1}g_1) + g_1Q + Q \\ & \stackrel{(12)}{=} & \psi(g_0^{-1}g_2) + \psi(g_1g_2) + \psi(g_0^{-1}g_0^{-1}g_1g_0) + g_1Q + Q \\ & = & \psi(g_0^{-1}g_2) + \psi(g_1g_2) + \psi(g_0^2) + \psi(g_1g_0) + g_1Q + Q \ . \end{array}$$

Observe that

$$\psi(g_0^{-1}g_2) + \psi(g_1g_2) + \psi(g_1g_0) = \psi(g_1g_0) + \psi(g_0^{-1}g_2) + \psi(g_1g_2)
= \psi(g_1g_0g_0^{-1}g_2) + \psi(g_1g_2)
= \psi(g_1g_2) + \psi(g_1g_2)
= 2\psi(g_1g_2)
= 0$$

Hence one can continue:

$$\begin{array}{lcl} \partial \phi_{Q,\psi}(g_1,g_2) & = & \psi(g_0^{-1}g_2) + \psi(g_1g_2) + \psi(g_0^2) + \psi(g_1g_0) + g_1Q + Q \\ & = & \psi(g_0^2) + g_1Q + Q \\ & = & \psi(g_0^2) + g_0Q + Q \; . \end{array}$$

Therefore, if $\partial \phi_{Q,\psi} = 0$, then

$$\psi(g_0^2) = g_0 Q + Q .$$

Remark 3.2.1 Clearly, the condition (i) is equivalent to the condition $\psi \in (Hom(H, {}_2\bar{E}))^{G/H}$ and can be deduced directly from the isomorphism 10.

3.3 Classification of cocycles

Now one can classify all 1-cocycles $\phi = \phi_{Q,\psi}$ of the group G with coefficients in $_2\bar{E}$ according to the number of elements in $\mathrm{im}(\psi)$.

Denote by ξ the surjective homomorphism $G \to \{O, P\}$ with kernel H. Then $\xi = \partial T = \partial S$ and ξ is a unique non-trivial 1-coboundary of G with coefficients in $_2\bar{E}$. If $\#\operatorname{im}(\psi) = 1$, i.e. $\psi = 0$, then the formula 11 and Lemma 3.2.1 show that either $\phi = 0$ or $\phi = \xi$. In both cases $\operatorname{cls}(\phi) = 0$ in $H^1(G, _2\bar{E})$.

Let $\phi_{Q,\psi}$ be a cocycle. Let ψ_T and ψ_S are the compositions of ψ with the projections of the group $_2\bar{E}$ on $\{O,T\}$ and $\{O,S\}$ respectively. Let $U=\ker(\psi_T)$. Then $\ker(\psi_S)=g_0^{-1}Ug_0$. The condition $\#\operatorname{im}(\psi)=2$ is equivalent to the condition $g_0^{-1}Ug_0=U$, $g_0\in G\backslash H$. In this case ψ is a surjective homomorphism $H\to\{O,P\}$ with kernel U. The group U is normal in G by Lemma 3.1.1. Consider the quotient group G/U. There are two possible cases for G/U: either $G/U\cong \mathbb{Z}/2\oplus \mathbb{Z}/2$ or $G/U\cong \mathbb{Z}/4$. In the first case one can choose $g_0\in G\backslash H$ such that $g_0^2\in U$. By Lemma 3.2.1 the point Q lie in $\{O,P\}$. But $\phi_{P,\psi}+\phi_{O,\psi}=\xi=\partial T$. Consequently, we can consider only cocycles $\phi_{O,\psi}$. If $G/U\cong \mathbb{Z}/4$ then $g_0^2\in H\backslash U$. By Lemma 3.2.1 the point Q lies in $\{T,S\}$. Adding ξ one can consider only cocycles $\phi_{T,\psi}$.

Definition 3.3.1 Let $\phi = \phi_{Q,\psi}$ be a cocycle with $\#\operatorname{im}(\psi) = 2$ and $U = \ker(\psi)$. If $G/U \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$ and Q = O, then we say that ϕ is a cocycle of the type I. If $G/U \cong \mathbb{Z}/4$ and Q = T, then we say that ϕ is a cocycle of the type II.

Now let us consider the case of a cocycle $\phi = \phi_{Q,\psi}$ with $\#\operatorname{im}(\psi) = 4$. The corresponding homomorphism can be uniquely determined by a subgroup U of index 2 in H such that $U \neq g_0^{-1}Ug_0$ for some $g_0 \in G \setminus H$ (note that $g_0^{-1}Ug_0 = g_0'^{-1}Ug_0'$ for any two elements $g_0, g_0' \in G \setminus H$). Let $U_O = U \cap g_0^{-1}Ug_0$. The condition $U \neq g_0^{-1}Ug_0$ implies that the quotient group G/U_O is noncommutative of order 8. Moreover, G/U_O has 3 elements of order 2 lying in the subgroup H/U_O . Therefore G/U_O is isomorphic to the dihedral group D_4 (see, for example, [Hall59], 4.4). But D_4 has five elements of order 2. Consequently, there exists an element g_0 in $G \setminus H$ such that g_0^2 lies in U_O . By Lemma 3.2.1 the point Q lies $\{O, P\}$. Adding ξ if it is necessary one can consider only the case Q = O.

Definition 3.3.2 Cocycles $\phi = \phi_{T,\psi}$ with $\#\operatorname{im}(\psi) = 4$ will be called cocycles of type III.

In fact we proved the

Proposition 3.3.1 Any element in $_2H^1(G, \bar{E})$ can be represented by cocycle of one of three types I, II and III.

3.4 Direct calculations of cocycles

Proposition 3.4.1 Let $\phi = \phi_{Q,\psi}$ be a cocycle of the group G with coefficients in $_2\bar{E}$ and $U = \ker(\psi)$. If ϕ is a cocycle of type I, then ϕ is the surjective homomorphism $G \to \{O, P\}$ with kernel $U \cup g_0U$. If $\phi = \phi_{T,\psi}$ has type II, then

$$\phi_{T,\psi}(g) = \begin{cases} O, & \text{if } g \in U \\ T, & \text{if } g \in g_0 U \\ P, & \text{if } g \in H \setminus U \\ S, & \text{if } g \in G \setminus (H \cup g_0 U) \end{cases}$$

Proof. Let $\phi_{O,\psi}$ be a cocycle of type I. Then $G/U \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$ and $\operatorname{im}(\psi) = \{O,P\}$. If $g \in G \setminus (H \cup g_0 U)$, then $g_0^{-1}g \in H \setminus U$. Using formula (11) one can compute $\phi_{O,\psi}(g) = \psi(g_0^{-1}g) = P$. Moreover, for any $u \in U$ we have $\phi_{O,\psi}(g_0 u) = \psi(g_0^{-1}g_0 u) = \psi(u) = O$. Let $\phi_{T,\psi}$ be a cocycle of type II. Fix the isomorphism $G/U \cong \mathbb{Z}/4$ such that $\overline{g_0}$ maps into the

Let $\phi_{T,\psi}$ be a cocycle of type II. Fix the isomorphism $G/U \cong \mathbb{Z}/4$ such that $\overline{g_0}$ maps into the $1+\mathbb{Z}$. Sometimes it is convenient to identify the group G/U and $\mathbb{Z}/4$ by means of this isomorphism. Any $g \in G$ can be written in the form

$$g = g_0^i u$$
 where $i \in \{0, 1, 2, 3\}$ and $u \in U$,

where i is the order of an element g under the element g_0 . If the order i of g is even, then $g_0^i \in H$. Using formula 11 one can obtain that

$$\phi_{T,\psi}(g) = \psi(g_0^i u) = \psi(g_0^i) = \begin{cases} O, & \text{for } i = 0 \\ P, & \text{for } i = 2 \end{cases}$$

If i is odd, then $g_0^i \in G \setminus H$ and hence $g = g_0^i u \in G \setminus H$. Using the same lemma we have

$$\begin{split} \phi_{T,\psi}(g) &= \psi(g_0^{-1}g) + T = \psi(g_0^{-1}g_0^iu) + T \\ &= \psi(g_0^{i-1}u) + T = \psi(g_0^{i-1}) + T \\ &= \left\{ \begin{array}{l} T \;, \; \text{for } i = 1 \\ S \;, \; \text{for } i = 3 \end{array} \right. \end{split}$$

Now let us consider cocycles $\phi_{O,\psi}$ of type III. It follows from the definition that every such cocyle is completely determined by a subgroup U of index 2 in H such that $U \neq g_0^{-1}Ug_0$. Here $g_0 \in G \setminus H$ and $g_0^2 \in U_O = U \cap g_0^{-1}Ug_0$. If ψ_T and ψ_S are the compositions of ψ with the projections of $_2\bar{E}$ on $\{O,T\}$ and $\{O,S\}$ respectively, then $\psi = \psi_T + \psi_S$ and $U = \ker(\psi_T)$, $g_0^{-1}Ug_0 = \ker(\psi_T)$ (see Section 3.3). Let

$$U_S = U \setminus (g_0^{-1} U g_0)$$
$$U_T = (g_0^{-1} U g_0) \setminus U$$
$$U_P = H \setminus (U \cup g_0^{-1} U g_0)$$

be the cosets in H/U_O . Then $G/U_O = \{U_O, U_S, U_T, U_P, g_0U_O, g_0U_S, g_0U_T, g_0U_P, \}$. Schematically one can describe the quotient group G/U_O by the diagram

U_S	U_P
U_O	U_T
g_0U_S	g_0U_P
g_0U_O	g_0U_T

Here the top four squares correspond to the group H and all eight squares correspond to the whole group G.

Proposition 3.4.2 Let $\phi = \phi_{O,\psi}$ be a cocycle of type III. Let

$$V_O = U_O \cup g_0 U_O ,$$

$$V_S = U_S \cup g_0 U_T ,$$

$$V_T = U_T \cup g_0 U_S ,$$

and

$$V_P = U_P \cup g_0 U_P .$$

Then V_O is a (not normal) subgroup in G of index A. The sets V_O , V_S , V_T , V_P are left cosets of the group G by V_O . The cocycle $\phi_{O,\psi}$ can be computed by the formula

$$\phi_{O,\psi}(g) = \begin{cases} O, & \text{if } g \in V_O \\ S, & \text{if } g \in V_S \\ T, & \text{if } g \in V_T \\ P, & \text{if } g \in V_P \end{cases}$$

Proof. We know that $G/U_O \cong D_4$. Then this proposition can be proved by direct computation with using the formula

$$\phi_{O,\psi}(g) = \begin{cases} \psi(g), & g \in H \\ g_0 \psi(g_0^{-1}g), & g \in G \backslash H. \end{cases}$$
 (13)

and rules of multiplication in $G/U_O \cong D_4$. For example, let us prove that V_O is a subgroup in G and that it is not normal in G. By definition of a cocycle of type III, we have that $\overline{g_0}^2 = 1$ in G/U_O . Hence $V_O = U_O \cup g_0U_O$ is a subgroup in G. Let $h_S \in U_S$, $h_T \in U_T$ and $h_P \in U_P$. Then for any $u \in U_O$ we have:

$$\overline{h_S^{-1}g_0uh_S} = \overline{h_S}\overline{g_0}\overline{h_S} = \overline{g_0}(\overline{g_0}^{-1}\overline{h_S}\overline{g_0})\overline{h_S} = \overline{g_0}\overline{h_T}h_S = \overline{g_0}\overline{h_P} = \overline{g_0}h_P = \overline{g_0}h_P$$

In other words, $h_S^{-1}g_0uh_S \in g_0U_P$. Hence $g_0^{-1}V_Og_0 \not\subset V_O$ (because by definition of the set V_O we have that $V_O \cap g_0U_P = \emptyset$).

We can illustrate the values of cocycle $\phi_{O,\psi}$ of type III by the diagram

S	P
0	T
T	P
0	S

3.5 δ on cocycles

Now we want to lift the cohomology classes of cocycles $\phi_{Q,\psi}$ to the group ${}_2\mathrm{Br}(E)$. In other words, we want to describe unramified central simple algebras of an exponent 2 such that its classes maps into classes $\mathrm{cls}(\phi_{Q,\psi}) \in H^1(G,\bar{E})$ under the homomorphism π .

According to Section 2.3 and formula (6) the first step must be computing $\delta(\operatorname{cls}(\phi_{Q,\psi}))$ for cycles of the I and II types. We will determine $\delta(\operatorname{cls}(\phi_{Q,\psi}))$ in terms of explicit 2-cocycles of the group G with coefficients in $P(\bar{E})$.

Consider the following particular case of the short exact sequence (5):

$$0 \to P(\bar{E}) \longrightarrow Div^0(\bar{E}) \xrightarrow{sum} \bar{E} \to 0$$
.

For any point $W \in \overline{E}$ denote by (W) the same point viewed as a divisor on E. Then

$$sum((W) - (O)) = W.$$

Let ϕ be a continuous (in sense of the profinite topology on G) 1-cocycle of the group G with coefficients in \bar{E} . Denote by $\hat{\phi}$ the continuous map

$$\hat{\phi}: G \longrightarrow \mathrm{Div}^0(\bar{E})$$

such that

$$\hat{\phi}(g) = (\phi(g)) - (O)$$

for any $g \in G$. Then $\partial \hat{\phi}$ is a 2-cocycle of G with coefficients in $P(\bar{E})$, and

$$\delta(\operatorname{cls}(\phi)) = \operatorname{cls}(\partial \hat{\phi}) .$$

The formula

$$\partial \hat{\phi}(g_1, g_2) = g_1 \hat{\phi}(g_2) - \hat{\phi}(g_1 g_2) + \hat{\phi}(g_2) \tag{14}$$

allows to compute $\partial \hat{\phi}$ by $\hat{\phi}$. We need to do this for cocycles of types I, II and III. First we consider the cases of cocycles of I and II types.

4 Quaternion and cyclic algebras

4.1 Algebras corresponding to cocyles of type I

Proposition 4.1.1 Let $\phi_{O,\psi}$ be a cocycle of type I, $U = \ker(\psi)$ and $W = U \cup g_0U$ the subgroup of index 2 in G (see Proposition 3.4.1). Consider an element $a \in k \setminus k^2$ such that $k(\sqrt{a}) = \bar{k}^W$ is the subfield invariant under the action of W. Then the quaternion algebra

$$(a, x - x_P)$$

with center k(E) is unramified. The class of $(a, x - x_P)$ maps into the class $\operatorname{cls}(\phi_{O,\psi})$ under the homomorphism $\pi: \operatorname{Br}(E) \to H^1(G, \bar{E})$.

Proof. Consider the 2-cocycle $\Phi_{P,a}: G \times G \to \bar{k}(\bar{E})^*$ defined by the formula

$$\Phi_{P,a}(g_1,g_2) = \left\{ \begin{array}{l} x - x_P \;, \; \text{if } (g_1,g_2) \in (G\backslash W) \times (G\backslash W) \\ 1 \;, \; \text{in the other case} \end{array} \right.$$

The cocycle $\Phi_{P,a}$ defines the quaternion algebra $(a, x - x_P)$ over k(E). If div : $\bar{k}(\bar{E})^* \to P(\bar{E})$ is the map sending $f \in \bar{k}(\bar{E})^*$ into the divisor div(f) of zeros and poles of the function f, then $\partial \hat{\phi}_{O,\psi} = \text{div } \circ \Phi_{P,a}$. Taking into account the diagram in Section 2.3, one can see that

$$\operatorname{inv}(\operatorname{cls}(\Phi_{P,a})) = \beta(\alpha(\operatorname{cls}(\Phi_{P,a}))) = \beta(\operatorname{cls}(\operatorname{div} \circ \Phi_{P,a})) = \beta(\operatorname{cls}(\partial \hat{\phi}_{O,\psi})) = \beta(\delta(\operatorname{cls}(\phi_{O,\psi}))) = 0.$$

Hence the algebra $(a, x - x_P)$ is unramified and $\pi(\operatorname{cls}(\Phi_{P,a})) = \operatorname{cls}(\phi_{O,\psi})$.

4.2 δ for cocycles of type II

Proposition 4.2.1 Let $\phi_{T,\psi}$ be a cocycle of type II. Then the 2-cocycle $\partial \hat{\phi}_{T,\psi}: G \times G \to P(\bar{E})$ is given in the following table

$g_2 \in G ackslash (H \cup g_0 U)$	0	(S) - (T) + (P) - (O)	2(T) - 2(O)	(T) - (P) + (S) - (O)
$g_2 \in g_0 U$	0	(T) - (S) + (P) - (O)	(S) - (P) + (T) - (O)	2(S) - 2(O)
$g_2 \in H \backslash U$	0	2(P) - 2(O)	(P) - (S) + (T) - (O)	(P) - (T) + (S) - (O)
$g_2 \in U$	0	0	0	0
	$g_1 \in U$	$g_1 \in H \backslash U$	$g_1 \in g_0 U$	$g_1 \in G ackslash (H \cup g_0 U)$

Proof. By Proposition 3.4.1 we have the following explicit formula for $\hat{\phi}_{T,\psi}$:

$$\hat{\phi}_{T,\psi}(g) = \begin{cases} 0, & g \in U \Leftrightarrow i = 0\\ (T) - (O), & g \in g_0 U \Leftrightarrow i = 1\\ (P) - (O), & g \in H \backslash U \Leftrightarrow i = 2\\ (S) - (O), & g \in G \backslash (H \cup g_0 U) \Leftrightarrow i = 3 \end{cases}$$
 (15)

Let $g_1, g_2 \in G$ and i_1, i_2 are the orders of g_1, g_2 respectively. It is clear that the order i of g_1g_2 is equal to $i_1 + i_2$ modulo 4. The direct computation with the formulas (15) and (14) gives the following explicit form of the cocycle $\partial \hat{\phi}_{T,\psi}$:

i_1	i_2	$g_1\phi_{T,\psi}(g_2)$	$-\phi_{T,\psi}(g_1g_2)$	$\phi_{T,\psi}(g_1)$	sum
0	0	0	0	0	0
0	1	(T)-(O)	-(T)+(O)	0	0
0	2	(P)-(O)	-(P)+(O)	0	0
0	3	(S)-(O)	-(S) + (O)	0	0
1	0	0	-(T)+(O)	(T)-(O)	0
1	1	(S)-(O)	-(P)+(O)	(T)-(O)	(S) - (P) + (T) - (O)
1	2	(P)-(O)	-(S) + (O)	(T)-(O)	(P) - (S) + (T) - (O)
1	3	(T)-(O)	0	(T)-(O)	2(T) - 2(O)
2	0	0	-(P)+(O)	(P) - (O)	0
2	1	(T)-(O)	-(S) + (O)	(P)-(O)	(T) - (S) + (P) - (O)
2	2	(P)-(O)	0	(P)-(O)	2(P) - 2(O)
2	3	(S)-(O)	-(T)+(O)	(P) - (O)	(S) - (T) + (P) - (O)
3	0	0	-(S) + (O)	(S) - (O)	0
3	1	(S) - (O)	0	(S) - (O)	2(S) - 2(O)
3	2	(P)-(O)	-(T)+(O)	(S) - (O)	(P) - (T) + (S) - (O)
3	3	(T)-(O)	-(P)+(O)	(S) - (O)	(T) - (P) + (S) - (O)

Rewriting this table in more compact form we obtain the statement of the proposition.

4.3 Cross products corresponding to cocycles of type II

We need some lemma. For short we set

$$D_P = 2(P) - 2(O) = \operatorname{div}(x - x_P) ,$$

$$D_T = 2(T) - 2(O) = \operatorname{div}(x - x_T) ,$$

$$D_S = 2(T) - 2(O) = \operatorname{div}(x - x_S) ,$$

and

$$D = (P) + (T) + (S) - 3(O) .$$

Let

$$\Gamma = \langle D, D_P, D_T, D_S \rangle$$

be the subgroup in $P(\bar{E})$ generated by these principle divisors. Also let

$$\Omega = \langle y, x - x_P, x - x_T, x - x_S \rangle$$

be the subgroup in $\bar{k}(\bar{E})^*$ generated by the functions $x - x_P$, $x - x_T$, $x - x_S$ and y. It is clear that Γ and Ω are discrete G-submodules in $P(\bar{E})$ and $\bar{k}(\bar{E})^*$ respectively. The restriction of the homomorphism div : $\bar{k}(\bar{E})^* \to P(\bar{E})$ on the submodule Γ is a surjective G-homomorphism

$$\Omega \xrightarrow{\operatorname{div}} \Gamma$$
.

Lemma 4.3.1 Let $F = F\langle D, D_P, D_T, D_S \rangle$ denotes the free abelian group generated by the set $\{D, D_P, D_T, D_S\}$. Let $\tau : F \to \Omega$ be the homomorphism defined by $\tau(D_P) = x - x_P$, $\tau(D_T) = x - x_T$, $\tau(D_S) = x - x_S$, $\tau(D) = y$. Let $\mu : F \to \Gamma$ be the homomorphism which sends any element of the basis of the group F to itself. Then there exists a unique homomorphism (of discrete G-modules) γ , which makes the diagram

$$F \xrightarrow{\mu} \Gamma$$

$$\uparrow$$

$$\uparrow$$

$$\Omega$$

commutative. In particular,

$$\operatorname{div} \circ \gamma = \operatorname{id}_{\Gamma}$$
.

Proof. Observe that $2D = D_P + D_T + D_S$. Show that it is a unique relation in Γ . Indeed, let $l, m, n, t \in \mathbb{Z}$ and $D + mD_P + nD_T + tD_S = 0$. Then

$$\begin{split} l(P) + l(T) + l(S) - 3l(O) + 2m(P) - 2m(O) + 2n(T) - 2n(O) + 2t(S) - 2t(O) = \\ (l + 2m)(P) + (l + 2n)(T) + (l + 2t)(S) - 2(m + n + t)(O) - 3l(O) = 0 \Rightarrow \\ &\Rightarrow \begin{cases} l + 2m = 0 \\ l + 2n = 0 \\ l + 2t = 0 \\ 2(m + n + t) + 3l = 0 \end{cases} \end{split}$$

Solving this system one can see that m = n = t and l = -2m. Hence the relation $lD + mD_P + nD_T + tD_S = 0$ is of the form $-2mD + mD_P + mD_T + mD_S = 0$, that is $2D = D_P + D_T + D_S$.

Thus we have that Γ is the quotient group of $F = F\langle D, D_P, D_T, D_S \rangle$ by the cyclic subgroup generated by the element $D_P + D_T + D_S - 2D$. Then the existence of γ follows from the equality

$$\tau(D_P + D_T + D_S - 2D) = \frac{(x - x_P)(x - x_T)(x - x_S)}{y^2} = \frac{y^2}{y^2} = 1.$$

Definition 4.3.1 Let $\phi_{T,\psi}$ be a cocycle of type II defined by a normal subgroup U in G such that $U \subset H$ and $G/U \cong \mathbb{Z}/4$. Let

$$\Phi_{T,\psi} := \gamma \circ \partial \hat{\phi}_{T,\psi} .$$

Since γ is a homomorphism of discrete G-modules and $\partial \hat{\phi}_{T,\psi}$ is a 2-cocycle, the map $\Phi_{T,\psi}$ is a 2-cocycle of the group G with coefficients in $\bar{k}(\bar{E})^*$. Let

 A_U

be the central simple algebra over k(E) which is the cross product defined by the cocycle $\Phi_{T,\psi}$.

Proposition 4.3.1 Let $\phi_{T,\psi}$ be a cocycle of type II and $U = \ker(\psi)$. Then the 2-cocyle $\Phi_{T,\psi}$ from Definition 4.3.1 can be explicitly given by the following table

$g_2 \in G \backslash (H \cup g_0 U)$	1	$\frac{y}{x-x_T}$	$x - x_T$	$\frac{y}{x-x_P}$
$g_2 \in g_0 U$	1	$\frac{y}{x-x_S}$	$\frac{y}{x-x_P}$	$x - x_S$
$g_2 \in H \backslash U$	1	$x - x_P$	$\frac{y}{x-x_S}$	$\frac{y}{x-x_T}$
$g_2 \in U$	1	1	1	1
	$g_1 \in U$	$g_1 \in H \backslash U$	$g_1 \in g_0 U$	$g_1 \in G \backslash (H \cup g_0 U)$

The cross product A_U is an unramified central simple algebra of exponent 2 over the function field k(E). The class of A_U in Br(E) maps into the class $cls(\phi_{T,\psi})$ under the homomorphism $\pi: Br(E) \to H^1(G, \bar{E})$.

Proof. To obtain the table it is sufficient to apply the homomorphism γ to the table 4.2.1. Since $\operatorname{div} \circ \gamma = \operatorname{id}_{\Gamma}$, it follows that $\operatorname{div} \circ \Phi_{T,\psi} = \operatorname{div} \circ \gamma \circ \partial \hat{\phi}_{T,\psi} = \partial \hat{\phi}_{T,\psi}$. Hence $\alpha(\operatorname{cls}(\Phi_{T,\psi})) = \operatorname{cls}(\partial \hat{\phi}_{T,\psi}) = \delta(\operatorname{cls}(\phi_{T,\psi}))$. Taking into account the commutative diagram from Section 2.3, we see that

$$\operatorname{inv}(\operatorname{cls}(\Phi_{T,\psi})) = \beta \circ \alpha(\operatorname{cls}(\Phi_{T,\psi})) = \beta \circ \delta(\operatorname{cls}(\phi_{T,\psi})) = 0.$$

Therefore, $\operatorname{cls}(\Phi_{T,\psi}) \in \ker(\operatorname{inv})$. This means that A_U is an unramified algebra over k(E). The exponent of A_U is equal to 2 because $2\phi_{T,\psi} = 0$. The last assertion of the proposition is a direct consequence of the equality $\delta(\operatorname{cls}(\phi_{T,\psi})) = \alpha(\operatorname{cls}(\Phi_{T,\psi}))$ and the definition of the homomorphism π .

4.4 Cyclic algebras of degree 4

Note that the algebra A_U splits by a cyclic extension of degree four. To find a corresponding cyclic algebra we need some lemma relating to second cohomology of a cyclic group of order 4. Let $C = \{1, c, c^2, c^4\}$ be a such group with a generator c. Let M be a C-module, $M^C = \{m \in M \mid cm = m\}$ and $N(M) = \{m + cm \mid m \in M\}$. Then we have the well known isomorphism

$$v: H^2(C, M) \longrightarrow M^C/N(M)$$

(see, for example, [Mac63], chapter IV, § 7).

Lemma 4.4.1 Let $\phi: C \times C \to M$ be a 2-cocycle of C with coefficients in M. Then

$$v(\operatorname{cls}(\phi)) = \phi(c^3, c) + \phi(1, 1) + \phi(c^2, c) + \phi(c, c) + N(A).$$

Proof. The proof can be provided by comparison of two standard resolutions of the trivial C-module \mathbb{Z} for the cyclic group $C = \{1, c, c^2, c^3\}$.

We use Lemma 4.4.1 for computation of cyclic algebras of degree 4 similar to cross products A_U .

Proposition 4.4.1 Let $\phi_{T,\psi}$ be a cocycle of type II, $U = \ker(\psi)$, A_U be the central simple algebra defined by $\Phi_{T,\psi}$ (see Definition 4.3.1). Let Z/k be the cyclic field extension of degree 4 defined by U. Then the algebra A_U is similar to the cyclic algebra

$$(Z \cdot k(E)/k(E), f)$$

over center k(E). Here f = f(x) is the polynomial from the decomposition (1) considered as an element in k(E).

Proof. Let C = G/U be the cyclic group of order 4 with the generator $c = g_0U$, $Z = \bar{k}^C$ and Z(E) be the field of Z-rational functions on the curve $E_Z = E \times \operatorname{Spec}(Z)$. The table from Proposition 4.3.1 shows that the 2-cocycle $\Phi_{T,\psi}$ factors through the group C, that is there exists the commutative square

$$G \times G \longrightarrow C \times C$$

$$\downarrow^{\Phi_{T,\psi}} \qquad \qquad \downarrow^{\varphi_{T,\psi}}$$

$$\bar{k}(\bar{E})^* \longleftarrow Z(E)^*$$

where the cocyle $\varphi_{T,\psi}: C \times C \to Z(E)^*$ can be computed according to the table

c^3	1	$\frac{y}{x-x_T}$	$x - x_T$	$\frac{y}{x-x_P}$
c	1	$\frac{y}{x-x_S}$	$\frac{y}{x-x_P}$	$x-x_S$
c^2	1	$x-x_P$	$\frac{y}{x-x_S}$	$\frac{y}{x-x_T}$
1	1	1	1	1
	1	c^2	c	c^3

The cohomology class $\operatorname{cls}(\Phi_{T,\psi}) \in H^2(G, \bar{k}(\bar{E})^*)$ is the image of $\operatorname{cls}(\varphi_{T,\psi}) \in H^2(C, Z(E)^*)$ under the injective inflation homomorphism inf : $H^2(C, Z(E)^*) \hookrightarrow H^2(G, \bar{k}(\bar{E})^*)$. In terms of central simple algebras this means that the algebra $A_U \otimes_{k(E)} Z(E)$ splits, so the class of algebra A_U lies in the relative Brauer group $\operatorname{Br}(Z(E)/k(E))$.

Now observe that for $M=Z(E)^*$ the norm homomorphism $N:Z(E)^*\to Z(E)^*$ is the norm $N_{Z(E)/k(E)}:Z(E)^*\to k(E)^*$ in the sense of field extensions. According to Lemma 4.4.1 the isomorphism

$$v: H^2(C, Z(E)^*) \xrightarrow{\cong} k(E)^*/N(Z(E)^*)$$

sends $\varphi_{T,\psi}$ into the class of the rational function

$$\varphi_{T,\psi}(c^3,c) \cdot \varphi_{T,\psi}(1,1) \cdot \varphi_{T,\psi}(c^2,c) \cdot \varphi_{T,\psi}(c,c) =$$

$$= (x - x_S) \cdot \frac{y}{x - x_S} \cdot \frac{y}{x - x_P} =$$

$$= \frac{y^2}{x - x_P} = \frac{(x - x_P) \cdot f(x)}{x - x_P} = f(x) .$$

Let $(Z \cdot k(E)/k(E), f(x))$ be the cyclic algebra over k(E) defined by the cyclic extension $Z \cdot k(E)/k(E)$, the generator $c = g_0U$ of the group C = G/U and the rational function $f(x) \in k(E)$. Then $(Z \cdot k(E)/k(E), f(x))$ is the crossed product induced by the 2-cocycle

c^3	1	f	f	f
c	1	1	1	f
c^2	1	f	1	f
1	1	1	1	1
	1	c^2	c	c^3

Using Lemma (4.4.1) once more we see that the isomorphism

$$v: H^2(C, Z(E)^*) \stackrel{\cong}{\to} k(E)^*/N(Z(E)^*)$$

maps the class of $\varphi'_{T,\psi}$ into the coset of the rational function

$$\varphi'_{T,\psi}(c^3,c) \cdot \varphi'_{T,\psi}(1,1) \cdot \varphi'_{T,\psi}(c^2,c) \cdot \varphi'_{T,\psi}(c,c) = f \cdot 1 \cdot 1 \cdot 1 = f.$$

Thus we have that $v(\operatorname{cls}(\phi'_{T,\psi})) = v(\operatorname{cls}(\phi_{T,\psi}))$, whence $\operatorname{cls}(\phi'_{T,\psi}) = \operatorname{cls}(\phi_{T,\psi})$. In terms of central simple algebras over k(E) this means that the algebra A_U is similar to the algebra $(Z \cdot k(E)/k(E), f)$.

5 Dihedral algebras

Now let us calculate unramified central simple algebras over k(E) corresponding to cocycles $\phi_{O,\psi}: G \to {}_2\bar{E}$ of type III. Cocycles of type III was defined in Section 3.3 and calculated in Section 3.4. We shall use the notations of these sections. In particular, U is a subgroup in H such that [H:U]=2 and $U\neq g_0^{-1}Ug_0$. If $\psi_T:H\to\{O,T\}$ is the surjective homomorphism with kernel U and $\psi_S:H\to\{O,T\}$ is the surjective homomorphism with kernel $g_0^{-1}Ug_0$, then $\psi=\psi_T+\psi_S$.

5.1 δ for cocycles of type III

Proposition 5.1.1 Let $\phi_{O,\psi}$ be a cocycle of type III defined by a subgroup U of index 2 in H such that $g_0^{-1}Ug_0 \neq U$, where $g_0^2 \in U_O = U \cap g_0^{-1}Ug_0$ (see Sections 3.3 and 3.4). Let $\hat{\phi}_{O,\psi}: G \to \operatorname{Div}^0(\bar{E})$ be the map such that $\hat{\phi}_{O,\psi}(g) = (Q) - (O)$ if and only if $\phi_{O,\psi}(g) = Q \in {}_2\bar{E}$. Then the 2-cocycle $\partial \hat{\phi}_{O,\psi}: G \times G \to \operatorname{P}(\bar{E})$ can be calculated by the formula

$$\phi_{O,\psi}(g_1,g_2) = \begin{cases} 0 \ , \ \ (g_1,g_2) \in (V_O \times G) \cup (G \times V_O) \\ \operatorname{div}(x-x_S) \ , \ \ (g_1,g_2) \in (U_S \times V_S) \cup (g_0U_T \times V_T) \\ \operatorname{div}(x-x_T) \ , \ \ (g_1,g_2) \in (U_T \times V_T) \cup (g_0U_S \times V_S) \\ \operatorname{div}(x-x_P) \ , \ \ (g_1,g_2) \in V_P \times V_P \\ \operatorname{div}(\frac{y}{x-x_S}) \ , \ \ (g_1,g_2) \in (V_T \times V_P) \cup (U_P \times V_T) \cup (g_0U_P \times V_S) \\ \operatorname{div}(\frac{y}{x-x_T}) \ , \ \ (g_1,g_2) \in (V_S \times V_P) \cup (U_P \times V_S) \cup (g_0U_P \times V_T) \\ \operatorname{div}(\frac{y}{x-x_P}) \ , \ \ (g_1,g_2) \in ((U_S \cup g_0U_S) \times V_T) \cup ((U_T \cup g_0U_T) \times V_S) \end{cases}$$

Proof. For the proof we use the formula

$$\partial \hat{\phi}_{O,\psi}(g_1,g_2) = g_1 \hat{\phi}_{O,\psi}(g_2) - \hat{\phi}_{O,\psi}(g_1g_2) + \hat{\phi}_{O,\psi}(g_1)$$

and the rule of multiplication in $G/U_O \cong D_4$. All calculations are in the following eight tables:

g_1	g_2	$g_1\phi_{O,\psi}(g_2)$	$-\phi_{O,\psi}(g_1g_2)$	$\phi_{O,\psi}(g_1)$	sum
U_O	U_O	0	0	0	0
U_O	U_S	(S)-(O)	-(S) + (O)	0	0
U_O	U_T	(T)-(O)	-(T)+(O)	0	0
U_O	U_P	(P)-(O)	-(P)+(O)	0	0
U_O	g_0U_O	0	0	0	0
U_O	g_0U_S	(T)-(O)	-(T)+(O)	0	0
U_O	g_0U_T	(S)-(O)	-(S) + (O)	0	0
U_O	g_0U_P	(P)-(O)	-(P) + (O)	0	0

g_1	g_2	$g_1\phi_{O,\psi}(g_2)$	$-\phi_{O,\psi}(g_1g_2)$	$\phi_{O,\psi}(g_1)$	sum
U_S	U_O	0	-(S) + (O)	(S) - (O)	0
U_S	U_S	(S) - (O)	0	(S) - (O)	2(S) - 2(O)
U_S	U_T	(T)-(O)	-(P)+(O)	(S) - (O)	(T) - (P) + (S) - (O)
U_S	U_P	(P) - (O)	-(T)+(O)	(S)-(O)	(P) - (T) + (S) - (O)
U_S	g_0U_O	0	-(S) + (O)	(S) - (O)	0
U_S	g_0U_S	(T)-(O)	-(P)+(O)	(S) - (O)	(T) - (P) + (S) - (O)
U_S	g_0U_T	(S)-(O)	0	(S)-(O)	2(S) - 2(O)
U_S	g_0U_P	(P)-(O)	-(T) + (O)	(S)-(O)	(P) - (T) + (S) - (O)

g_1	g_2	$g_1\phi_{O,\psi}(g_2)$	$-\phi_{O,\psi}(g_1g_2)$	$\phi_{O,\psi}(g_1)$	sum
U_T	U_O	0	-(T)+(O)	(T)-(O)	0
U_T	U_S	(S)-(O)	-(P)+(O)	(T)-(O)	(S) - (P) + (T) - (O)
U_T	U_T	(T)-(O)	0	(T)-(O)	2(T) - 2(O)
U_T	U_P	(P)-(O)	-(S)+(O)	(T)-(O)	(P) - (S) + (T) - (O)
U_T	g_0U_O	0	-(T)+(O)	(T)-(O)	0
U_T	g_0U_S	(T)-(O)	0	(T)-(O)	2(T) - 2(O)
U_T	g_0U_T	(S)-(O)	-(P)+(O)	(T)-(O)	(S) - (P) + (T) - (O)
U_T	g_0U_P	(P)-(O)	-(S)+(O)	(T)-(O)	(P) - (S) + (T) - (O)

g_1	g_2	$g_1\phi_{O,\psi}(g_2)$	$-\phi_{O,\psi}(g_1g_2)$	$\phi_{O,\psi}(g_1)$	sum
U_P	U_O	0	-(P)+(O)	(P) - (O)	0
U_P	U_S	(S) - (O)	-(T)+(O)	(P) - (O)	(S) - (T) + (P) - (O)
U_P	U_T	(T)-(O)	-(S) + (O)	(P) - (O)	(T) - (S) + (P) - (O)
U_P	U_P	(P)-(O)	0	(P) - (O)	2(P) - 2(O)
U_P	g_0U_O	0	-(P)+(O)	(P) - (O)	0
U_P	g_0U_S	(T)-(O)	-(S) + (O)	(P) - (O)	(T) - (S) + (P) - (O)
U_P	g_0U_T	(S) - (O)	-(T)+(O)	(P)-(O)	(S) - (T) + (P) - (O)
U_P	g_0U_P	(P)-(O)	0	(P) - (O)	2(P) - 2(O)

g_1	g_2	$g_1\phi_{O,\psi}(g_2)$	$-\phi_{O,\psi}(g_1g_2)$	$\phi_{O,\psi}(g_1)$	sum
g_0U_O	U_O	0	0	0	0
g_0U_O	U_S	(T)-(O)	-(T)+(O)	0	0
g_0U_O	U_T	(S) - (O)	-(S) + (O)	0	0
g_0U_O	U_P	(P)-(O)	-(P)+(O)	0	0
g_0U_O	g_0U_O	0	0	0	0
g_0U_O	g_0U_S	(S) - (O)	-(S) + (O)	0	0
g_0U_O	g_0U_T	(T)-(O)	-(T) + (O)	0	0
g_0U_O	g_0U_P	(P) - (O)	-(P) + (O)	0	0

g_1	g_2	$g_1\phi_{O,\psi}(g_2)$	$-\phi_{O,\psi}(g_1g_2)$	$\phi_{O,\psi}(g_1)$	sum
g_0U_S	U_O	0	-(T)+(O)	(T)-(O)	0
g_0U_S	U_S	(T)-(O)	0	(T)-(O)	2(T) - 2(O)
g_0U_S	U_T	(S)-(O)	-(P)+(O)	(T)-(O)	(S) - (P) + (T) - (O)
g_0U_S	U_P	(P) - (O)	-(S) + (O)	(T)-(O)	(P) - (S) + (T) - (O)
g_0U_S	g_0U_O	0	-(T)+(O)	(T)-(O)	0
g_0U_S	g_0U_S	(S)-(O)	-(P)+(O)	(T)-(O)	(S) - (P) + (T) - (O)
g_0U_S	g_0U_T	(T)-(O)	0	(T)-(O)	2(T) - 2(O)
g_0U_S	g_0U_P	(P)-(O)	-(S) + (O)	(T)-(O)	(P) - (S) + (T) - (O)

g_1	g_2	$g_1\phi_{O,\psi}(g_2)$	$-\phi_{O,\psi}(g_1g_2)$	$\phi_{O,\psi}(g_1)$	sum
g_0U_T	U_O	0	-(S) + (O)	(S)-(O)	0
g_0U_T	U_S	(T)-(O)	-(P)+(O)	(S)-(O)	(T) - (P) + (S) - (O)
g_0U_T	U_T	(S) - (O)	0	(S)-(O)	2(S) - 2(O)
g_0U_T	U_P	(P)-(O)	-(T)+(O)	(S)-(O)	(P) - (T) + (S) - (O)
g_0U_T	g_0U_O	0	-(S) + (O)	(S)-(O)	0
g_0U_T	g_0U_S	(S)-(O)	0	(S)-(O)	2(S) - 2(O)
g_0U_T	g_0U_T	(T)-(O)	-(P) + (O)	(S)-(O)	(T) - (P) + (S) - (O)
g_0U_T	g_0U_P	(P)-(O)	$\overline{-(T)} + (O)$	(S)-(O)	(P) - (T) + (S) - (O)

g_1	g_2	$g_1\phi_{O,\psi}(g_2)$	$-\phi_{O,\psi}(g_1g_2)$	$\phi_{O,\psi}(g_1)$	sum
g_0U_P	U_O	0	-(P)+(O)	(P)-(O)	0
g_0U_P	U_S	(T)-(O)	-(S) + (O)	(P)-(O)	(T) - (S) + (P) - (O)
g_0U_P	U_T	(S)-(O)	-(T)+(O)	(P)-(O)	(S) - (T) + (P) - (O)
g_0U_P	U_P	(P)-(O)	0	(P)-(O)	2(P) - 2(O)
g_0U_P	g_0U_O	0	-(P)+(O)	(P)-(O)	0
g_0U_P	g_0U_S	(S)-(O)	-(T)+(O)	(P)-(O)	(S) - (T) + (P) - (O)
g_0U_P	g_0U_T	(T)-(O)	-(S)+(O)	(P)-(O)	(T) - (S) + (P) - (O)
g_0U_P	g_0U_P	(P)-(O)	0	(P)-(O)	2(P) - 2(O)

Now one can rewrite the results of these calculations in more compact way. This yields the third assertion of the proposition. \Box

5.2 Dihedral cross products

Now observe that the image of the cocycle $\partial \hat{\phi}_{O,\psi}$ lies in Γ (see Section 4.3 for the definition of Γ). Hence one can obtain the cocycle

$$\Phi_{O,\psi} = \gamma \circ \partial \hat{\phi}_{O,\psi} : G \times G \longrightarrow \Omega \subset \bar{k}(\bar{E})^* .$$

According Proposition 5.1.1 the cocycle $\Phi_{O,\psi}$ can be calculated by the formula

$$\Phi_{O,\psi}(g_1,g_2) = \left\{ \begin{array}{l} 1 \;,\;\; (g_1,g_2) \in (V_O \times G) \cup (G \times V_O) \\ x - x_S \;,\;\; (g_1,g_2) \in (U_S \times V_S) \cup (g_0 U_T \times V_T) \\ x - x_T \;,\;\; (g_1,g_2) \in (U_T \times V_T) \cup (g_0 U_S \times V_S) \\ x - x_P \;,\;\; (g_1,g_2) \in V_P \times V_P \\ \frac{y}{x - x_S} \;,\;\; (g_1,g_2) \in (V_T \times V_P) \cup (U_P \times V_T) \cup (g_0 U_P \times V_S) \\ \frac{y}{x - x_T} \;,\;\; (g_1,g_2) \in (V_S \times V_P) \cup (U_P \times V_S) \cup (g_0 U_P \times V_T) \\ \frac{y}{x - x_P} \;,\;\; (g_1,g_2) \in ((U_S \cup g_0 U_S) \times V_T) \cup ((U_T \cup g_0 U_T) \times V_S) \end{array} \right.$$

Definition 5.2.1 Denote by B_U the cross product defined by the cocycle $\Phi_{O,\psi}$ (constructed by the cocycle $\phi_{O,\psi}$ of type III). Then B_U is a central simple algebra with center k(E). We shall call B_U a dihedral cross product because it can be splitted by the normal extension \bar{k}^{U_O} with Galois group $G/U_O \cong D_4$.

Proposition 5.2.1 The dihedral cross product B_U is an unramified central simple algebra over k(E) of exponent 2 and index at most 4. The class of B_U in Br(E) maps under the homomorphism π into the cohomology class of the cocycle $\phi_{O,\psi}$.

Proof. Taking into account the considerations in Section 2.3 one can calculate

$$\begin{array}{lll} \operatorname{inv}(\operatorname{cls}(\Phi_{O,\psi})) & = & \beta(\alpha(\operatorname{cls}(\Phi_{O,\psi}))) \\ & = & \beta(\operatorname{cls}(\operatorname{div} \circ \Phi_{O,\psi})) \\ & = & \beta(\operatorname{cls}(\partial \hat{\phi}_{O,\psi})) \\ & = & \beta(\delta(\operatorname{cls}(\phi_{O,\psi}))) \\ & = & 0 \ . \end{array}$$

Hence B_U is unramified and $\pi([B_U]) = \operatorname{cls}(\phi_{O,\psi})$.

Denote by ρ the homomorphism $H^2(G,\Gamma) \to H^2(G,\bar{k}(\bar{E})^*)$ induced by the composition $\Gamma \xrightarrow{\gamma} \Omega \subset \bar{k}(\bar{E})^*$. Then

```
\begin{array}{lcl} 2\operatorname{cls}(\Phi_{O,\psi}) & = & 2\operatorname{cls}(\gamma\circ\partial\hat{\phi}_{O,\psi}) \\ & = & 2\rho\operatorname{cls}(\partial\hat{\phi}_{O,\psi}) \\ & = & 2\rho\delta(\operatorname{cls}(\phi_{O,\psi})) \\ & = & \rho\delta(\operatorname{cls}(2\phi_{O,\psi})) \\ & = & 0 \ . \end{array}
```

Hence B_U has exponent 2.

Since the restriction $\Phi_{O,\psi}|_{V_O\times V_O}$ is zero (see explicit formula for $\Phi_{O,\psi}$ below), the algebra B_U splits by the field \bar{k}^{V_O} . But the subgroup V_O has index 4 in G by Proposition 5.1.1. Consequently, the index of B_U is at most 4.

5.3 End of the proof

Let $c \in {}_2H^1(G,\bar{E})$. According to Proposition 3.3.1 the class c can be presented by a cocycle ϕ of one of three types I, II or III. Let $U = \ker(\psi)$, where $\psi = \phi|_H$. If ϕ is a cocycle of type I, then $\pi([(a,x-x_P)]) = c$, where $a \in k$ such that $\bar{k}^U = k(\sqrt{a})$ (see Proposition 4.1.1). So one can put $b_c = [(a,x-x_P)] \in {}_2\pi^{-1}(c)$ (see Section 2.5). If ϕ is a cocycle of type II, then $\pi([(Z,f)]) = c$, where $Z = \bar{k}^U$ (see Propositions 4.3.1 and 4.4.1) such that $\bar{k}^U = k(\sqrt{a})$. So one can take $b_c = [(a,x-x_P)]$. At last, if ϕ is a cocycle of type III, then let $b_c = [B_U]$ (see Proposition 5.2.1). Now applying Lemma 2.4.1 we finish the proof of Theorem 1.0.1.

References

- [Lich69] S.Lichtenbaum. Duality Theorems for Curves over P-adic Fields. Invent. Math. 7, 120 136 (1969).
- [Co88] J.-L.Colliot-Thélène (with the collaboration of J.-J.Sansuc). The rationality problem for fields of invariants under linear algebraic groups (with special regard to the Brauer group). Unpublished Lecture Notes from the 9th ELAM, Santiago de Chile, 1988.
- [GMY97] V.I.Guletskiĭ, G.L.Margolin, V.I.Yanchevskiĭ. Presentation of two-torsion part in Brauer groups of curves by quaternion algebras. (In Russian). Dokl. NANB. 41 (1997), no. 6, 4 8.
- [GY98] V.I.Guletskiĭ, V.I.Yanchevskiĭ. Presentation of torsion in Brauer groups of curves by cyclic algebras.(In Russian). Dokl. AN Belarusi, 42 (1998), no. 2, 52-55.
- [YM96] V.I.Yanchevskii, G.L.Margolin. The Brauer groups and the torsion of local elliptic curves. St.Peterburgsburg Math. J. Vol.7 (1996), no.3.
- [VY96] G.B.Vasiuk, V.I.Yanchevskiĭ. On the 2-torsion part of Brauer group of local elliptic curves with good reduction defined over the field of 2-adic numbers.(In Russian). Dokl. AN Belarusi, 40 (1996), no.6, 31-33.
- [V97] G.B.Vasiuk. On the 2-torsion part of Brauer group of 2-adic elliptic curves in the nonsplit case of bad reduction.(In Russian). Dokl. AN Belarusi, 41 (1997), no.6, 13-16.
 - [1] M. van den Bergh *The algebraic index of a division algebra*. Lect. Notes in Math. 1197 (1985) 190-206.
- [Fadd51] D.K.Faddeev. Simple algebras over a function field in one variable. Proc. Steklov Inst. 38 (1951) 321 344; English transl. in AMS Transl. 3 (1956) 15 38.

- [Mi81] J.S.Milne. Comparison of the Brauer group with the Tate-Šafarevič group. J. Fac. Science, Univ. Tokyo, Sec. IA. 28 (1981) 735-743.
- [Sch69] W.Scharlau. Über bie Brauer-Gruppe eines algebraischen Funktionen-körpers in einer Variabein. J. für die reine und angew. Math. Bd. 239/240 (1969), S. 1-6.
- [Serre] J.-P.Serre. Cohomologie Galoisienne. Springer-Verlag, 1964.
- [Hall59] M.Hall. The theory of groups. N.Y. MacMillan, 1959.
- [Mac63] S.Maclane. *Homology*. Die grundlehren der mathematischen wissenschaften. Springer-Verlag, 1963.
- [Pie82] R.S.Pierce. Associative algebras. Graduate Texts in Mathematics 88, Springer-Verlag, 1982.